The Cauchy problem for effectively hyperbolic operators
نویسندگان
چکیده
منابع مشابه
Uniqueness in Cauchy Problems for Hyperbolic Differential Operators
In this paper we prove a unique continuation theorem for second order strictly hyperbolic differential operators. Results also hold for higher order operators if the hyperbolic cones are strictly convex. These results are proved via certain Carleman inequalities. Unlike [6], the paramétrées involved only have real phase functions, but they also have Gaussian factors. We estimate the parametrice...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn the Cauchy Problem for Nonlinear Hyperbolic Systems
This paper consider various examples of metrics which are contractive w.r.t. an evolution semigroup, and discusses the possibility of an abstract O.D.E. theory on metric spaces, with applications to hyperbolic systems. In particular, using a recently introduced deenition of Viscosity Solutions, it is shown how a strictly hyperbolic system of conservation laws can be reformulated as an abstract ...
متن کاملOn the mixed problem for non strictly hyperbolic operators
The classical theory of strictly hyperbolic boundary value problems has received several extensions since the 70’s. One of the most noticeable is the result of Metivier establishing that Majda’s "block structure condition" for constantly hyperbolic operators, which implies well-posedness for the initial boundary value problem (IBVP) with zero initial data. The well-posedness of IBVP with non ze...
متن کاملFactoring Weakly Compact Operators and the Inhomogeneous Cauchy Problem
By using the technique of factoring weakly compact operators through reflexive Banach spaces we prove that a class of ordinary differential equations with Lipschitz continuous perturbations has a strong solution when the problem is governed by a closed linear operator generating a strongly continuous semigroup of compact operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1983
ISSN: 0385-4035
DOI: 10.14492/hokmj/1525852964